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The evolution and decay of a homogeneous flow over random topography in a rotating
system is studied by means of numerical simulations and theoretical considerations.
The analysis is based on a quasi-two-dimensional shallow-water approximation, in
which the horizontal divergence is explicitly different from zero, and topographic
variations are not restricted to be much smaller than the mean depth, as in quasi-
geostrophic dynamics. The results are examined by comparing the evolution of
a turbulent flow over different random bottom topographies characterized by a
specific horizontal scale, or equivalently, a given mean slope. As in two-dimensional
turbulence, the energy of the flow is transferred towards larger scales of motion; after
some rotation periods, however, the process is halted as the flow pattern becomes
aligned along the topographic contours with shallow water to the right. The quasi-
steady state reached by the flow is characterized by a nearly linear relationship
between potential vorticity and transport function in most parts of the domain, which
is justified in terms of minimum-enstrophy arguments. It is found that global energy
decays faster for topographies with shorter horizontal length scales due to more
effective viscous dissipation. In addition, some comparisons between simulations
based on the shallow-water and quasi-geostrophic formulations are carried out. The
role of solid boundaries is also examined: it is shown that vorticity production at
no-slip walls contributes for a slight disorganization of the flow.
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1. Introduction
A homogeneous fluid in a constantly rotating system presents a columnar motion, as

derived from the Taylor–Proudman theorem. This behaviour is commonly observed
in laboratory experiments in a rotating fluid tank, where columns are parallel to
the vertical axis of rotation (for a recent and thorough review see van Heijst &
Clercx 2009). The columnar motion of rotating flows is a widely used tool that
helps to understand the quasi-two-dimensional behaviour of oceanic and atmospheric
flows under the influence of the Earth’s rotation (stratification and geometrical
considerations related with the shallow-water character of meso- and large-scale
geophysical flows are also responsible for its quasi-two-dimensional motion).
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In the absence of external forcing, strictly two-dimensional turbulent flows are
characterized by a self-organization process in which energy is transferred from
small scales of motion towards larger scales (see e.g. Batchelor 1969). A similar
process is observed in quasi-two-dimensional turbulence, where rotation effects and
bottom topography variations are taken into account. One of the main differences
when variable topography is present, is that the inverse energy cascade is halted
as the flow tends towards a steady state, aligned with topography contours with
shallow water to the right. This process has been examined in previous papers
by Bretherton & Haidvogel (1976), Salmon, Holloway & Hendershott (1976) and
Carnevale & Frederiksen (1987), among others, whose analyses are based on the
quasi-geostrophic context. The quasi-geostrophic approximation is a valuable tool that
helps to understand the behaviour of oceanic and atmospheric flows characterized by
time scales larger than the rotation period of the system (i.e. small Rossby numbers)
and weak topographic variations (see e.g. Pedlosky 1987).

The main goal of this paper is to study the evolution and decay of a freely evolving
flow over variable topography by using a more general shallow-water approximation,
in which depth variations are not restricted to be much smaller than the mean depth, as
in quasi-geostrophy. By using a rigid-lid approximation, this formulation is essentially
(quasi) two-dimensional. However, it allows explicitly a non-zero divergence of the
horizontal velocity field, which is due to squeezing and stretching effects of fluid
columns as they move over the topography (e.g. Grimshaw, Tang & Broutman 1994).
As reported in previous studies, the quasi-two-dimensional approximation is a suitable
tool when simulating laboratory experiments with variable bottom topography (see
van Heijst & Clercx 2009 and references therein). Furthermore, it might be a more
adequate model to study geophysical flows over steep topographic features, such as
seamounts, submarine ridges or canyons. The results presented here are obtained by
theoretical considerations and numerical simulations based on this physical model.
Of course, quasi-geostrophy can be recovered when considering small topographic
variations, and therefore some results presented here are closely related with those
found in previous studies.

The results are examined for different random topographies, which are characterized
by a horizontal length scale or, equivalently, a well-defined mean slope. This provides
two important advantages: Firstly, an ensemble of several numerical simulations is
performed for a given topographic length scale, so the results are rather general for
that type of topography, regardless its random character. Secondly, this procedure
allows the comparison of results between topographies with different length scales.
Other studies are based on single or few simulations (do not perform ensemble
averages) and therefore are not able to make generalizations in terms of the average
topography characteristics.

Some properties of the shallow-water system shown here are analogous to their
counterparts in quasi-geostrophy. A remarkable one is the above-mentioned tendency
to evolve towards a quasi-steady state in which the flow is aligned along topographic
contours. Such a flow configuration can be defined in quasi-geostrophy by a functional
relationship between potential vorticity and stream function in some parts of the
domain, as derived by Bretherton & Haidvogel (1976). These authors proposed a
linear relationship by using a variational, minimum-enstrophy principle: the flow
evolves towards a state of minimum enstrophy for a given total energy. In the
shallow-water model used here, an equivalent relationship between potential vorticity
and transport function is verified. The constant of proportionality is a function of the
flow energy and it is also related with the characteristic scale of the topography.
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Although this linear relation does not strictly hold over the whole domain, it
provides a good approximation to the observed flow pattern. A similar variational
principle is reported by Adcock & Marshall (2000), who derived an expression for the
eddy-induced transport used to parameterize the effect of geostrophic vortices over
topography. Even though the present paper is focused on shallow-water dynamics,
some comparisons with quasi-geostrophic results are analysed. The procedure mainly
consists of comparing numerical simulations based on the two models. Although there
are some coincidences in both situations, as expected, there are also clear differences
that shall be underlined.

The simulations presented here also explore the influence of boundary conditions
when the flow is confined in a square box with solid walls. The role of
lateral boundaries in two-dimensional turbulence has been the subject of recent
investigations, either numerical or experimental by a number of researchers (e.g.
Clercx, Maassen & van Heijst 1999; Maassen, Clercx & van Heijst 2002). These
studies have shown that the main effect of solid boundaries is the formation of
thin, intense filaments of vorticity that are injected into the flow interior (Clercx
et al. 2005). Here it shall be shown that the small-scale structures generated at no-slip
walls, contribute to decrease the average length scale of the flow or, equivalently, to
slightly disorganize the flow. This is achieved by comparing with simulations with
free-slip walls.

The organization of the paper is the following. In § 2 the shallow-water model is
presented, as well as a minimum enstrophy principle satisfied by the long-term quasi-
steady state of the flow. Section 3 describes the numerical parameters used in the
simulations and the way to characterize random topographies. Numerical results are
presented in § 4, where simulations using different bottom topographies are compared;
in addition, different measures for characterizing the flow–topography correlation are
proposed. Final remarks and conclusions are included in § 5.

2. Theory
2.1. Shallow-water model

Consider a rotating fluid in a Cartesian system with coordinates (x, y), and the axis of
rotation parallel to the vertical coordinate z. The evolution equation for the vertical
component of the relative vorticity ω is

ωt + J (q, ψ) = ν∇2ω, (2.1)

where ψ is a transport function, subindex t denotes partial time derivative, the
horizontal Laplacian is ∇2 = ∂xx + ∂yy , and J (A, B) = AxBy − AyBx is the Jacobian
operator. The potential vorticity is defined as

q =
ω + f

h
, (2.2)

where f is the Coriolis parameter and h(x, y) is the total fluid depth, which in general
depends on the horizontal coordinates (x, y) due to topographic variations, and it is
time-independent in the rigid-lid approximation. The continuity equation is

(hu)x + (hv)y = 0, (2.3)

which allows to write horizontal velocities as

u =
1

h
ψy, v = −1

h
ψx. (2.4)



162 L. Zavala Sansón, A. González-Villanueva and L. M. Flores

The relative vorticity can be written in terms of the transport function as

ω = −∇ ·
(

1

h
∇ψ

)
,

= −1

h
(ψxx + ψyy) +

1

h2
(hxψx + hyψy). (2.5)

In the inviscid limit, the quasi-two-dimensional model has similar invariants as in
the quasi-geostrophic approximation. Potential vorticity is materially conserved

Dq

Dt
= 0, (2.6)

with D/Dt = ∂t + u∂x + v∂y . In addition, integral quantities such as energy and
potential enstrophy are globally conserved. Given the spatial variation of bottom
topography it is convenient to write these expressions in terms of volume integrals.
The total energy is

E =
1

2

∫
1

h2
|∇ψ |2h dx dy. (2.7)

This expression can be rewritten, after standard mathematical steps, as

E = −1

2

∫
ωψ dx dy, (2.8)

that is, in a similar form as it is usually written in two-dimensional turbulence.
However, it must be recalled that units of ψ are different here or, in order to obtain
an expression with units of squared velocity, (2.7) has to be divided by the total
volume V =

∫
h(x, y) dx dy. The potential enstrophy is defined as

Q =
1

2

∫
q2h dx dy. (2.9)

Both quantities are conserved in the inviscid limit, i.e. dE/dt = dQ/dt = 0 for ν → 0.
There is actually an infinite set of invariants given by the so-called generalized
enstrophy,

∫
G(q)h dx dy, where G is an arbitrary, differentiable function of q .

It must be noticed that conservation laws for the shallow-water dynamics are
equivalent to the corresponding expressions in the quasi-geostrophic model; global
functionals, however, are integrated over a volume instead of an area. Potential
vorticity conservation implies a potential enstrophy cascade towards smaller scales
of motion, according with vorticity elongation arguments: a closed material circuit
is strained by the flow while preserving its interior area and the corresponding
potential vorticity of interior elements; the continuous elongation and folding of this
area represents a transfer of enstrophy to smaller scales of motion (Bretherton &
Haidvogel 1976).

The quasi-geostrophic model can be recovered when considering topographic
variations much smaller than the total fluid depth. This can be derived by writing fluid
depth as h(x, y) = H − �h(x, y), where H is the mean depth, and small deviations
are such that |�h(x, y)| � H . The vorticity equation has the same form as (2.1)
but with potential vorticity defined as qqg =ω + f �h/H and the stream function as
ψqg = ψ/H . Note that units of these two fields are different from their counterparts in
the quasi-two-dimensional model; using length and time scales, L and T , respectively,
it is verified that

[ψqg, qqg] = (L2T −1, T −1), [ψ, q] = (L3T −1, L−1T −1). (2.10)
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The corresponding expression of the relative vorticity in terms of the stream function
is the Poisson equation ω = −∇2ψqg . Another difference is that the horizontal velocity
has zero divergence, and therefore the velocity components are u =ψqg

y and v = −ψqg
x .

2.2. Steady states and minimum enstrophy principle

A remarkable property of two-dimensional flows is the tendency to evolve towards
preferred states of motion as (inverse) energy and (direct) enstrophy cascades take
place. When the flow tends to acquire a steady state, nonlinear terms are no longer
acting, that is,

J (q, ψ) = 0. (2.11)

The immediate consequence is that the potential vorticity has the form

q = F (ψ), (2.12)

where F is a single-valued function at least along each closed streamline. In general
F might be nonlinear.

Here it is shown that a linear q − ψ relationship is obtained by deriving a minimum
enstrophy principle. An equivalent condition was originally reported by Bretherton &
Haidvogel (1976) for the quasi-geostrophic approximation. Consider the state achieved
by the flow as one of minimum potential enstrophy given a fixed energy. This
variational principle can be formulated as

δQ + μδE = 0, (2.13)

where μ is a Lagrange multiplier. Using expressions (2.7) and (2.9), and after some
manipulations when calculating variations of functionals E and Q, yields∫

∇ ·
[

1

h
∇(q + μψ)

]
δψ dx dy = 0. (2.14)

A sufficient condition to satisfy this integral is by demanding

q + μψ = q0, (2.15)

where q0 is a constant, and the slope μ defines a length scale

lb =
1

μ1/4
. (2.16)

The structure of the quasi-steady state can be anticipated depending on the
considered horizontal length scale of the flow L compared with lb. To see this,
(2.15) is rewritten in non-dimensional terms

εω′ + 1 + μH 2L2εψ ′h′ = q0Hf −1h′, (2.17)

where ε = U/f L is the Rossby number defined with the velocity scale U . For small
scales L � μ−1/4,

εω′ + 1 ∼ q0Hf −1h′, (2.18)

or in dimensional terms

ω ∼ q0h − f. (2.19)

This means that for relatively small scales the vorticity field resembles the topography.
Another limit is when μH 2L2ε ∼ 1, which corresponds to large scales since L � μ−1/4

as the flow decays (ε → 0). In this case

1 + μH 2L2εψ ′h′ ∼ q0Hf −1h′, (2.20)
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which in dimensional terms implies

ψ ∼ q0

μ
− f

μh
. (2.21)

Thus, for large scales the transport function (the flow pattern) is inversely proportional
to the depth field. This behaviour is observed in the numerical simulations presented
in next sections.

Both limits for small and large scales are analogous to those found by Bretherton &
Haidvogel (1976) in the quasi-geostrophic context, which can be recovered by using
suitable approximations for small topographic variations (and considering that they
defined the stream function with opposite sign). The minimum enstrophy principle in
quasi-geostrophy is

qqg = μqgψqg, (2.22)

where μqg defines a length scale l
qg
b =1/(μqg)1/2. The equivalence between Lagrange

multipliers is derived from (2.15) when the topographic amplitudes are much smaller
than the mean depth H :

μqg = μH 2, (2.23)

for which q0 ≈ f/H was used (this last approximation is valid only for the quasi-
geostrophic limit). Furthermore, the Lagrange multiplier depends inversely on the
energy of the flow as (Bretherton & Haidvogel 1976)

μqg ≈ Sf

UH
, (2.24)

where S is the mean topographic slope. Combining (2.23) and (2.24) in (2.16), the
length scale lb from the shallow-water model can be written as

lb =
(
Hl

qg
b

)1/2
=

(
UH 3

Sf

)1/4

. (2.25)

This expression shall be evaluated when making some comparisons between the two
formulations.

3. Methods
3.1. Numerical parameters

The dynamical model represented by (2.1) and (2.5) is solved by means of a finite
differences code. Time advance in (2.1) is performed by using a third-order Runge–
Kutta scheme. The relation between relative vorticity and transport function, (2.5),
is solved by using a multigrid method. Bottom friction effects are not considered.
The flow–topography correlation, however, is also observed when Ekman friction is
included, as shown in Zavala Sansón (2007). The horizontal domain is a 1 × 1 box
divided by a 256 × 256 square grid. The Coriolis parameter is f = 1, corresponding
with a rotation period of about T =4π/f ≈ 12.5. The time step is 0.4 and the duration
of the experiments is 1800 (∼150 rotation periods). No-slip boundary conditions are
prescribed at the lateral walls, where ψ is set to zero. A comparison with stress-free
conditions is shown in the last part of next section.

The initial condition is an array of 16 × 16 Gaussian vortices with diameter a = 0.05
and alternate-sign vorticity with maximum magnitude |ωmax | =1. The array is centred
at the square domain. Within a space of length a between the closest row (column)
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Figure 1. Contours of representative bottom topographies h(x, y) − H (H = 0.25) with
horizontal length scales (a) small, (b) medium and (c) large. Positive contours are plotted
with black lines and represent topographic valleys with respect to the mean value; similarly,
negative contours are with grey lines and represent topographic hills. Contour interval is 0.005.
The corresponding depth profiles along the horizontal line (x, 0.5) for each topography are
shown in the plots below, where the dashed line indicates the mean depth H .

of vortices and the boundaries the vorticity is zero. A similar configuration is used
in other studies (Clercx et al. 1999; Zavala Sansón & Sheinbaum 2008). The initial
positions of the vortices is not uniform in the array, but have a small random
perturbation from the vertices. However, the initial positions of the vortices is not
relevant, given the random character of the topographies (see below). The Reynolds
number based on the initial velocity scale U = 0.005, on the initial vortex diameter a,
and using ν =10−6 is Re = 250 (Clercx et al. 1999 used the half length of the domain,
0.5, which gives Re =2500).

3.2. Bottom topographies

Three types of bottom irregularities are analysed, characterized by a specific mean
horizontal scale that is much smaller than the domain size. Hereafter, the topographies
will be referred to as small, medium and large according to figure 1, which shows
one particular topography for each horizontal scale and the corresponding depth
profile along the central part of the domain. In all cases the mean fluid depth is
H = 0.25 and maximum variations are of order ±0.20. The topographies can be
identified by their mean slope |∇h| (averaged over the hortizontal area), which are
2.26, 1.41 and 1.09, respectively. Of course, the larger the horizontal scale the lower
the mean slope. All topographies show a Gaussian distribution, i.e. probability density
functions of the depth fields over the whole domain have this distribution. In order to
obtain representative results, ensemble averages are calculated with five realizations
for each type of topography. It is important to remark, therefore, that the conclusions
obtained in this study are derived from several simulations with completely different
topographies with common statistical features.

The depth field is generated by superposing a set of Gaussian functions centred at
a squared grid mn that is coarser than the domain ij grid, and with amplitudes ĥmn
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randomly chosen between −0.10 and 0.10. Thus, the depth field is defined as

hij = H +
∑
mn

ĥmn exp
(
−r2

{ij−mn}/s
2
)
, (3.1)

where the random amplitudes are defined over the coarse grid, and r{ij − mn} is the
radial distance of the ij node to the nm nodes. In order to construct three different
depth fields, the parameter s is given values of 0.04, 0.06 and 0.08, for the small,
medium and large topography, respectively. The corresponding grid size mn is of
25 × 25, 16 × 16, and 12 × 12 points, respectively. Each realization of the ensembles
is defined by a different set of random Gaussian amplitudes in (3.1). The depth fields
could also be defined in terms of Fourier components h(x, y) =

∑
kl ĥ cos(kx + ly + φ̂)

with random amplitudes and phases, or with any other approximation. The final
results should be the same, since they depend on the average characteristics of the
topography.

4. Results
4.1. Flow evolution

Figure 2 presents the evolution of the vorticity field calculated in a typical run with
a small topographic horizontal scale. The initial condition is shown in figure 2(a),
and the depth field is in figure 2(d ). There is an initial stage up to about t ≈ 15T

(not shown) during which the flow is rather irregular: the main interactions are
between vortices, either merging when being of equal sign or translating as dipoles
when having different circulation. Larger vortices are then formed, according with
the inverse energy cascade. Another important feature is the interaction of vortices
with the no-slip wall, forming filaments of opposite sign vorticity, which are injected
towards the interior of the domain. At t ≈ 19T the influence of the topography
becomes evident: the vorticity field has adopted the form of the bottom (figure 2b).
Fluid columns with positive (negative) vorticity are located over deep (shallow)
regions. This configuration is maintained during the rest of the simulation as the
flow decays. An additional process after long time periods is that such a distribution
does not decay uniformly along the domain. This is clearly observed at t ≈ 76T

(figure 2c): the flow experiences a stronger decay at the domain periphery. This is a
first indication of the effect of the no-slip boundaries. Basically, the filaments formed
at the walls are constricted to be very thin, according with the scale of the topography,
and therefore are rapidly dissipated by viscosity. This effect is further discussed and
measured below.

The general behaviour just described is observed for flows over any topographic
configuration. Figure 3 presents the contours of potential vorticity, relative vorticity
and transport function at t ≈ 67T , in a simulation with a medium topography field,
shown in figure 3(d ). There are several comparisons that can be made between
different figures. For instance, it can be noticed that relative vorticity (figure 3b)
adopts the shape of the topography for small scales, as indicated by (2.19). In
contrast, the transport function (figure 3c) is smoothed out or coarser over the whole
domain, as expected from (2.21) for larger scales. Potential vorticity (figure 3a) is
anticorrelated with the topography, since the decaying flow implies that ω � f and
therefore q → f/h. In other words, shallow areas correspond with high potential
vorticity values, and deep areas correspond with low potential vorticity values. It
can also be noticed that potential vorticity tends to be proportional to minus the
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Figure 2. Relative vorticity contours calculated at three different times over a small-scale
topography (panel a shows the initial condition). Positive contours are plotted with black lines,
and negative are with grey lines. Contour intervals are 1/10 of maximum vorticity at each
time. (d ) Contours of topography as in figure 1.

transport function (compare figures 3a and 3c), as expected from the analysis shown
in § 2.

All these comparisons are quantitatively discussed in next subsections. More
importantly, these observations and some other properties of the flow (such as
scatter plots) are measured as a function of the horizontal scale of the topography.
This shall be done by performing sets of simulations for each bottom configuration,
in order to compute ensemble averages.

4.2. Evolution of integral quantities

The most relevant global functionals are the energy and potential enstrophy since
their values are conserved for non-viscous flows. Their time evolution is examined
in figure 4 by performing ensemble averages for each type of topography. Values
are normalized with respect to their initial value. Consider first the evolution of
global energy (figure 4a). The decay over the three topographies is identical up to
times of about ≈ 15T , which is the initial stage when the flow is governed by vortex
interactions. More importantly, for longer times energy decays faster on the small-scale
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Figure 3. Contours of (a) potential vorticity q − q (with q the average value over the whole
domain), (b) relative vorticity and (c) transport function of a flow over a medium-scale
topography at time t/T = 85.94. Positive contours are plotted with black lines, and negative
are with grey lines. Contour intervals are 1/30, 1/30 and 1/10 of maximum values of each
field, respectively. (d ) Contours of the depth field as in figure 1.

topography than on larger scales. The reason for this behaviour is associated with the
fact that the flow has adopted the shape of the topography, and therefore dissipation
effects due to viscosity are more efficient on shorter length scales. In other words, a
smaller local Reynolds number can be associated, implying a more effective viscous
dissipation. Thus, the decay rate of energy is influenced by the characteristic length
scale of the bottom, which imposes a limitation on the size of vortical structures
during the self-organization process. Potential enstrophy also shows a rapid decay
until 15T , nearly identical over any topography (figure 4b). After reaching a minimum
value, it slightly grows towards a constant value.

The flow organization (or disorganization) can be measured by calculating the time
evolution of an integral scale of motion defined with the help of integral functionals. In
two-dimensional turbulence one can define l = (E2D/Z2D)1/2, using the integral energy
E2D and enstrophy Z2D in two dimensions (or the equivalent squared wavenumber
k2 = Z2D/E2D , Clercx et al. 1999). Considering units of potential enstrophy in the
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Figure 4. Time evolution of (a) total energy, (b) potential enstrophy, (c) average horizontal
length scale and (d ) two-dimensional potential enstrophy calculated from ensemble averages
for each topography: small (solid); medium (dashed) and large (dashed-dotted).

shallow-water model one might be tempted to estimate an integral length scale as
l = (E/Q)1/4. However, this scale is not appropriate since after long times Q scales as
(f/H )2/2, that is, the length scale of motion (associated with the flow) is lost. Instead,
the relative enstrophy now integrated over the whole volume Z = 1/2

∫
ω2h dx dy can

be used to define

l =

√
E

Z
. (4.1)

This scale is associated with the flow organization: it is expected to observe l to
increase in time when starting from values smaller than the horizontal topographic
scale, as in all cases studied here. The corresponding curves for the three topographies
are shown in figure 4(c) (figure 4 d shows the decay of relative enstrophy, which is
rather similar in all cases). As for the case of energy, during initial stages this scale
has a very similar increase over any topography. This behaviour is produced as the
flow adopts the shape of the topography. The time at which the growth rate changes
can be considered as a measure of the time lapse when the inverse cascade takes
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Figure 5. Time evolution of the normalized, two-dimensional cross-correlation coefficients (a)
rω and (b) rψ , for each topography: small (solid); medium (dashed) and large (dashed-dotted).
Note that in all cases correlations are nearly zero at t = 0, when the initial flow is uncorrelated
with the topography.

place, which is longer for larger topographic scales. This interval is about 15, 25 and
30 rotation periods for the small, medium and large-scale topographies, respectively.
At a certain time l reaches a maximum, which, again, occurs first for the small-scale
bottom. For later stages a slight decay is observed. This effect is partially due to the
influence of the walls: the short scale of the thin filaments ejected from the walls
contribute to decrease the value of l.

A quantitative expression of the flow–topography alignment can be calculated by
means of the two-dimensional cross-correlation coefficient r between these two fields.
For two square matrices A and B with dimensions N , the equation for the normalized,
zero-lag cross-correlation is

r(t) =
1

N − 1

∑
ij

(Aij − A)(Bij − B)

σAσB

, (4.2)

where A, B , σA and σB are the corresponding mean values and standard deviations.
The correlation coefficient is a function of time as the flow evolves over the topography.
There are two ways to calculate this parameter by using (2.19) and (2.21), which result
in coefficients rω(t) and rψ (t). The first one, rω, measures the correlation between
relative vorticity ω and the topography using (2.19), while rψ compares the transport
function ψ with the inverse of the depth field using (2.21). Figure 5 shows the time
evolution of the corresponding coefficients calculated with ensemble averages for
each topography (average values of μ and q0 are used for each case). Initially, the
coefficients are very close to zero, since the initial flow is nearly uncorrelated with the
depth field. The correlations are increased as the flow evolves and adapts to the shape
of the topography. Coefficients rω (figure 5a) have a regular behaviour for the three
topographies: they increase in time, as expected, and reach a maximum after which all
of them slightly decay, especially for the small topography. The correlation increases
faster and is larger for smaller topographies. Coefficients rψ (figure 5b) do not allow a
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Figure 6. Scatter plots calculated at time t/T = 86 for flows over three different bottom
topographies: (a) small, (b) medium and (c) large. Superposed straight lines are the least-square
fit in each case. Potential vorticity and transport function are normalized with maximum values.
Dark points correspond with valleys and grey points correspond with hills with respect to the
mean depth.

clear distinction between the different topographies. For these reasons, coefficients rω

are a more valuable tool for quantitatively measuring the flow–topography alignment.

4.3. Scatter plots

The relationship between potential vorticity and transport function is analysed by
means of scatter plots. The intention is to verify to what extent a functional
relationship between these two fields exists, and how far is from being linear, as
expected from minimum-enstrophy arguments. Scatter plots constructed with local
values of q and ψ are shown in figure 6 (points within a narrow area next to the
walls are not considered in order to exclude the influence of the boundaries; when
these points are included the results are very similar). Typical results for the three
different topographies are presented at t = 86T , when the flow is well aligned with
the topography in all cases. The diagrams show a set of branches that represent
areas where there is a relatively well-defined q − ψ functional relation. These regions
mainly correspond with submarine mountains or canyons, either separate or together.
Therefore, the small-scale topography presents a larger number of such branches,
since in average there are more topographic irregularities. Note that dark (grey)
points correspond to topographic depressions (bumps). Then, as expected, structures
with positive circulations (ψ > 0) are located over valleys, while negative circulations
(ψ < 0) correspond with hills.

Another remarkable feature observed in scatter plots is that the slope of the
structures with positive circulations is smaller than those with negative values,
specially for the small topography. Besides, the q − ψ relationship might or might
not be linear in specific locations. Figure 7 shows two examples. First, consider
a particular area comprising both a mountain and a valley from a medium-size
topography (figures 7a and 7b). Recall that over these topographic features there is
negative relative vorticity over the mountain and positive over the valley. Evidently,
the slope of the points over the hill is larger than that of the points over the valley.
The q − ψ relation here is clearly nonlinear, although the tendency is similar in the
sense that dq/dψ < 0. The q − ψ relationship might look more linear in some cases.
This is shown in figures 7(c) and 7(d ) for the case of a rectangular area containing a
mountain and a valley from a large-scale topography (the coarser case). The points
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Figure 7. Scatter plots calculated at time t/T =86 using data points inside limited rectangular
areas covering both a deep and shallow regions. (a) and (b): Rectangular area in a medium
topography. (c) and (d ): Rectangular area in a large topography. Potential vorticity and
transport function are normalized with maximum values. Dark points correspond with valleys,
and grey points correspond with hills with respect to the mean depth. Topography contours
as in figure 1.

that most deviate from the linear relationship are those where ψ changes sign, i.e. at
the region between the mountain and the valley.

Since the configuration of the scatter plot is strongly dependent on the specific
shape of each topography, it is useful to determine a quantitative measurement that
distinguishes the results between topographies with different length scales. This can
be done by assuming that a linear q − ψ relationship is valid over the whole domain.
In figure 6 a least-squares best fit corresponding to q = −μψ + q0 is also shown in
the scatter plots (solid line). Recall that the corresponding slope μ gives a length
scale lb = μ−1/4. Furthermore, as the flow continues its decay there are changes in the
value of the Lagrange multiplier, and hence lb is also time dependent. Therefore, its
evolution can be calculated by fitting a linear q − ψ relationship at different times. This
procedure can be applied to the whole ensemble of simulations for each topography
and take the corresponding average values. This is presented in figure 8(a), where
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Figure 8. Time evolution of the length scale lb for each topography: small (solid); medium
(dashed) and large (dashed-dotted). (a) Calculated from scatter plots of each one of the
five simulations for each topography and ensemble averaged; values are measured every five
rotation periods; initial values (dotted) are not valid. (b) Predicted values from expression

(2.25), using U ≈ 2
√

E, where E is the total energy of the flow measured from the ensembles
of shallow-water simulations.

the time evolution of lb is computed for the three topographies. Values during the
first rotation periods are not shown since at these times the flow has not clearly
acquired the shape of the topography and therefore the linear fit does not have
sense. The three curves show that lb decreases in time, with coarser topographies
having larger magnitudes. This result can be compared with the predictions given by
expression (2.25), which basically gives the dependence of lb with the decaying velocity
scale of the flow U . Using U ≈ (2E)1/2 measured from the simulations, the predicted
values for lb (ensemble averaged) can be estimated. These are shown in figure 8(b).
The resemblance with the directly measured curves is evident. Recall, however, that
the theoretical values (2.25) are derived with the help of quasi-geostrophic results.
This is a first indication on the relation between both formulations, despite the
abrupt topographies studied here. In next subsection a more systematic comparison
is explored, showing more coincidences and differences between the two dynamical
models.

4.4. Some comparisons with quasi-geostrophy

The scope of this paper is to describe quantitatively the flow–topography adjustment
in the shallow-water formulation, which is more ample than the quasi-geostrophic
theory. Nevertheless, it is useful to investigate some comparisons between simulations
based on the two formulations. Recall that the range of topographic variations used
here is rather wide: there can be hills or valleys with maximum amplitude of about
80 % of the mean depth. Such a range would not be valid for quasi-gestrophic
theory, in which bottom features are restricted to be much smaller than the mean
depth. Despite this, the simulations presented up to here were repeated under the
quasi-geostrophic approximation described in § 2. It must be recalled that instead of
a transport function ψ , in the quasi-geostrophic case a stream function ψqg , with
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Figure 9. Scatter plots calculated from numerical simulations based on quasi-geostrophic
dynamics at time t/T = 86 for flows over three different bottom topographies: (a) small, (b)
medium and (c) large. Plots can be compared with shallow water simulations shown in figure 9.

different units, must be solved. The corresponding potential vorticity is also defined
with different units, as shown in (2.10).

A first result is that the main flow characteristics present a similar trend in both
formulations (not shown here): the flow acquires the shape of the topography in
10–20 rotation periods, with cyclonic (anticyclonic) circulation over valleys (hills).
This qualitative agreement between the shallow-water and the quasi-geostrophic
simulations is found for the three different topographies. This is in fact somewhat
surprising when considering that the restriction of small topographic amplitudes is
clearly violated.

In order to investigate quantitative differences between both formulations, scatter
plots from quasi-geostrophic simulations are examined. These are shown in figure 9,
which can be compared with the corresponding shallow water plots presented in
figure 6. The differences are qualitatively very clear: in the quasi-geostrophic case
there is much more dispersion, in contrast with the well-defined branches in the
shallow water case that show little dispersion. Another difference is that in quasi-
geostrophy the slope of the whole plot is nearly constant for positive or negative
circulations, while such a slope is greater for negative ψ values than for positive in the
shallow-water model, as described in the previous subsection. Recall that, due to the
flow–topography adjustment, the former are mainly points over valleys and the latter
are points over hills. The more symmetrical situation in quasi-geostrophy is expected
when considering that changes in relative vorticity when climbing or descending the
topography are equivalent for cyclonic or anticyclonic fluid columns. In contrast,
such changes are different for columns in the shallow water formulation, where they
depend on the local fluid depth besides the topographic variation (see also Zavala
Sansón 2007).

Another way to make comparisons is by means of the energy decay measured from
the ensemble of five simulations for each topography. Recall that the total energy in
the quasi-geostrophic case is calculated as

Eqg = −1

2

∫
ωψqg dx dy, (4.3)

which has the same form as (2.8) but now using the stream function. Equivalently,
(4.3) has to be divided by the total area A=

∫
dx dy (equal to 1 in the present case)

in order to obtain an expression with units of squared velocity. The ratio between
shallow water and quasi-geostrophic energies, E/Eqg , is shown in figure 10(a). It is
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Figure 10. Time evolution of global quantities in shallow-water and quasi-geostrophic
simulations for each topography: small (solid); medium (dashed) and large (dashed-dotted).
(a) Ratio of energy E/Eqg . (b) Ratio of length scales lb/ l

qg
b .

1.0
Topography SW transport function QG stream function(a)

0.8

0.6

0.4

0.2

0 0.5 1.0

1.0
(b)

0.8

0.6

0.4

0.2

0 0.5 1.0

1.0
(c)

0.8

0.6

0.4

0.2

0 0.5 1.0

Figure 11. (a) Topography contours of a Gaussian valley and mountain. Positive contours are
plotted with black lines, and negative are with grey lines. Contour interval is 0.005. Relative
vorticity contours from (b) a shallow-water simulation, (c) a quasi-geostrophic simulation.
Contour intervals as in figure 2.

observed that in all cases this ratio tends to be smaller than unity, i.e. in average the
total energy in the quasi-geostrophic simulations decays slower than in the shallow
water model. Note also that there is no clear distinction between the three types
of topography, and the three cases show an abrupt decay during the first rotation
periods and a slower decay afterwards. In addition, the lenght scale lqg = (Eqg/Zqg)1/2

is calculated, based on the total energy and enstrophy in the quasi-geostrophic domain
(area integrals), analogous to expression (4.1). The ensemble averages of the ratio
l/ lqg are shown in figure 10(b). Although the signal is rather noisy, it can be observed
that both length scales are very similar during the whole simulations; this indicates
that the adjustment of the flow to the topographies is rather similar in both dynamics.

The qualitative similarity between simulations based on shallow-water dynamics
and quasi-geostrophy is favoured by the random character of the topography. In other
words, it might be broken for larger horizontal scales of the variable topography.
Figure 11 presents the case of a topography given by a Gaussian valley and hill
as shown in figure 11(a). The mean depth is, as in previous cases, H = 0.25. The
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topographic amplitude is ±0.2, so the summit of the mountain has 0.05 depth and the
deepest point of the valley 0.45. The flow configuration after about 50 rotation periods
in simulations based on shallow-water dynamics and quasi-geostrophy are shown in
figures 11(b) and 11(c), respectively (using the same initial condition as in the rest of
the simulations). For the shallow-water case the transport function is plotted, while the
stream function is used for the quasi-geostrophic simulation. Although the flow tends
to accumulate cyclonic vorticity over the valley and anticyclonic over the mountain,
the qualitative arrangement is clearly different. Similar results have been observed
for a number of simplified topographies: single mountains, long ridges among others
(not shown). In other studies the differences observed between both models are
also remarkable, specially when using single vortices over simple topographies as in
Zavala Sansón & van Heijst (2002). In that study, laboratory experiments of unstable
vortices were successfully reproduced when using shallow-water simulations, while
quasi-geostrophy provided less satisfactory results.

4.5. Effects of boundary conditions

No-slip boundary effects play a role in the evolution of the flow as thin filaments are
ejected from the walls. This can be anticipated by visual inspection of vorticity plots,
which indicate that the flow decay is somewhat faster near the walls. A quantitative
measure to validate this assertion consists of comparing the energy decay in the
region adjacent to the walls with the energy of an equivalent area in the interior, as
shown figure 12(a). Since the boundary and the interior regions have the same area,
the initial energy is almost the same (being slightly greater in the interior given the
initial condition). The time evolution of the energy at these areas for the different
topographies is shown in figure 12(b–d ). As expected, the energy in the exterior
presents a faster decay. Recall that values presented here are referred to ensemble
averages. Note, however, that this effect is more pronounced during initial stages.

In order to investigate further the effect of the boundary conditions, the same
sets of five simulations for each one of the three topographies have been repeated
but now using free-slip boundaries. The flow evolution in all cases is similar to
those in previous figures (not shown here). In other words, the flow organizes along
topographic contours, and after several rotation periods it is weakly disorganized. A
direct comparison between simulations with no-slip and free-slip boundary conditions
is obtained by taking the average of global quantities over the whole set of 15 runs for
each case. Figure 13 presents the evolution of the corresponding global variables, now
denoted with brackets 〈·〉, in simulations using both types of boundary conditions.
As expected, energy decays slower when using the free-slip condition, since there is
no production of thin filaments at the walls (which eventually can be dissipated more
efficiently). For the same reason, the mean length scale l grows faster and reaches
larger values in the free-slip simulations. Recall that in the no-slip case the formation
of these thin structures at the boundaries contribute to diminish this mean value.
In this sense, the effect of no-slip lateral boundaries is then, at least partially, to
disorganize the decaying flow. The slow decay of l for very long times in the free-slip
case is apparently due to the weaker enstrophy decay (see figure 15d ).

5. Discussion and conclusions
The behaviour of barotropic flows in a rotating system under the influence of an

abrupt variable bottom topography has been analysed in a shallow-water formulation.
As in two-dimensional turbulence, the flow has a self-organization tendency due to
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Figure 12. (a) Definition of interior and exterior regions. The interior square region has
length 0.707 and has the same area as the exterior region. (b)–(d ) The time evolution of the
energy in the interior (solid) and the exterior (dashed) of the flow domain for the ensembles
with different topographies.

an inverse cascade that concentrates energy in larger scales of motion. Such a process
is halted after a few rotation periods, as the flow becomes aligned with the contours
of topography, i.e. when it reaches the horizontal scale of the topography.

The results are examined in terms of the characteristic horizontal length scale of the
topography. For instance, global energy decays faster for smaller topographic scales.
This is due to the fact that the maximum length scale that the flow reaches as it
becomes aligned with topographic contours is also smaller; therefore, although rather
weak, viscous effects are more efficient. This is a robust result based on ensembles of
simulations for each topography.

The flow evolution and decay process can be characterized by using two independent
measures (see § 4.2). One is the estimate of the global scale of the flow l, which is
measured by dividing the total energy and the relative enstrophy of the flow. Such
a scale increases in time according with the inverse energy cascade, until the flow
has acquired the shape of the topography, at about 15 rotation periods. Afterwards,
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Figure 13. Time evolution of global functionals based on ensemble averages over the three
types of topographies (15 simulations) using no-slip (solid) and free-slip (dashed) boundary
conditions.

a slight decay of l is observed, which indicates a weak disorganization of the flow.
Another quantity describing this process is the cross-correlation coefficient rω that
compares the relative vorticity field with depth anomalies as a function of time. Both
measures are obtained from ensemble averages, and therefore their time evolution
reliably represent the flow organization–disorganization over each type of topography.

As the flow is aligned with the topography and reaches a quasi-steady state, there
is a tendency to develop a well-defined relationship between potential vorticity and
transport function, as demanded by J (q, ψ) → 0. Certainly, however, this relation
does not hold in all regions, and in some cases does not even exist. From the
theoretical point of view, a linear relationship is suggested from a minimum potential
enstrophy principle that is satisfied when q = −μψ +q0 (§ 2). The variational principle
is analogous to that derived by Bretherton & Haidvogel (1976), who expressed an
equivalent relationship for quasi-geostrophic flows (with different units of q , ψ and
the Lagrange multiplier μ). In the present study a further step has been taken by
assuming that such a linear relationship is valid over the whole domain, and then
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deriving the scale lb = μ−1/4 for three different random topographies using ensemble
averages. Although scatter plots reveal that this relation is linear in some areas and
far from linear in some other specific regions, the general trend when considering
the whole domain validates this assumption. The key factor by which this theory
seems to work is the random character of the topography. Indeed, using single or few
topographic features might lead in some cases to highly nonlinear q − ψ relationships,
not allowing to define a characteristic lb. A possible cause of the nonlinear behaviour
might be the strong loss of energy, since the theory is based on the rapid decay of
enstrophy with respect to the slow decay of energy.

The comparison of shallow-water results with simulations based on quasi-
geostrophy provides coincidences and differences that must be taken into account.
At a first glance one observes qualitative similarities in the flow evolution for both
cases (e.g. from vorticity plots), even for non-small topographic amplitudes. Some
cautions must be taken, however, when this restriction is violated in quasi-geostrophic
simulations. For instance, when using larger horizontal scales of the topography the
qualitative resemblance between both cases might be less noticeable or even dissapear,
as shown in figure 11. Quantitative differences can be observed in scatter plots, where
the symmetry between positive and negative topographic perturbations is broken in
the shallow-water formulation: flow over hills (anticyclonic) shows a more pronounced
slope compared with the (cyclonic) structures over valleys. In contrast, scatter plots
in the quasi-geostrophic case are more symmetrical. Another difference, although
rather modest, is the faster energy decay in the shallow-water case. Summarizing,
when studying quantitative measures in turbulent flows over abrupt topographies it
is convenient to use the shallow-water formulation. For qualitative purposes, quasi-
geostrophic results over this type of topography might still be useful.

The role of no-slip boundaries is to decrease the average length scale of the flow,
which can be regarded as a slight disorganization of the flow. This effect is observed
from vorticity fields, for instance. The essential mechanism is that no-slip conditions
imply the formation of thin filaments near the walls that are rapidly dissipated (due
to their short scale) thus implying a faster decay near the boundaries, and a general
decrease of l. This is corroborated by comparing the evolution of integral quantities
obtained with free-slip simulations, where l grows faster and reaches higher values
than in the no-slip case.
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